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FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space
vehicles. Accordingly, criteria are being developed in the following areas of technology:

Environment
Structures
Guidance and Control

Chemical Propulsion.

Individual components of this work will be issued as separate monographs as soon as
they are completed. A list of all previously issued monographs in this series can be
found at the end of this document.

These monographs are to be regarded as guides to design and not as NASA
requirements, except as may be specified in formal project specifications. It is
expected, however, that the criteria sections of these documents, revised as experience
may indicate to be desirable, eventually will become uniform design requirements for
NASA space vehicles.

This monograph was prepared under the cognizance of the Langley Research Center.
The Task Manager was A. L. Braslow. The authors were V. I. Weingarten and P. Seide
of the University of Southern California. A number of other individuals assisted in
developing the material and reviewing the drafts. In particular, the significant
contributions made by B.O. Almroth of Lockheed Missiles & Space Company,
E. H. Baker of California Polytechnic Institute, D. O. Brush of the University of
California at Davis, R. F. Crawford of Astro-Research Corporation, G. A. Greenbaum
of TRW Systems, R.E. Hubka of Lockheed-California Company, R.R.Meyer of
McDonnell Douglas Corporation, M. D. Musgrove of The Boeing Company,
J. P. Peterson of NASA Langley Research Center, and G. A. Thurston of Martin
Marietta Corporation are hereby acknowledged.

Comments concerning the technical content of these monographs will be welcomed by
the National Aeronautics and Space Administration, Office of Advanced Research and

Technology (Code RVA), Washington, D.C. 20546.

August 1969
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BUCKLING OF THIN-WALLED
DOUBLY CURVED SHELLS

1. INTRODUCTION

Doubly curved shells are frequently used as walls of space vehicles and as external
closures or internal common bulkheads in fuel tanks. When doubly curved shells
develop compressive membrane forces in reaction to externally applied loads, their
load-carrying capacity is often limited by structural instability, or buckling. In many
cases, this capacity or buckling strength of a shell is reached when slight increases in
the external loading produce large and abrupt changes or buckles in the surface
geometry of the shell. For shells which do not fail catastrophically, a further increase
in the external loading will gradually produce amplificatibn of buckles, accompanied
by plastic deformation that eventually results in collapse of the structure.

The buckling strength of a doubly curved shell depends upon its curvature, its
geometric proportions (including the stiffening, when present), the elastic properties of
its materials, the manner in which its edges are supported, and the nature of the
applied loading. Initial, although small, geometric deviations of the shell from its ideal
shape can have a significant adverse effect on the buckling strength of doubly curved
shells, and can cause large scatter of experimental results.

This monograph presents criteria and recommends practices for design of
compressively loaded doubly curved shells. Data are given for shells of revolution,
including complete spheres, ellipsoids, and toroids, as well as for bulkheads. Most of
the data are for shells subjected to uniform pressure loads, although data are also given
for point loads on spheres.

The reduction of critical buckling loads caused by imperfections, small dynamic
oscillations, boundary conditions, and the like is usually accounted for by multiplying
the theoretical buckling loads by a correlation factor to obtain a lower-bound
conservative estimate. However, when insufficient data are available to obtain
correlation factors, testing is recommended to verify the design. Experimental
verification is also recommended for shells of arbitrary shape and for shells of
revolution having cutouts, joints, plasticity effects, and nonuniform shell stiffness. The
effect of small oscillations in applied loading is considered to be accounted for by the
correlation factor.




Related subjects include buckling of circular cylindrical shells (ref: 1) and buckling of
truncated conical shells (ref. 2), as well as buckling strength of structural plates, which
is to be treated in a planned NASA monograph. An ultimate design factor is used in
estimating design loads for buckling. Considerations involved in selecting the numerical
value of this factor are to be presented in another planned NASA monograph.

2. STATE OF THE ART

The buckling strength of shells is usually determined by combining theoretical
predictions with experimentally determined correlation factors. For doubly curved
shells, considerable capability for theoretical analysis is available. Experimental
investigations of the stability of doubly curved shells, however, lag far behind
analytical capabilities; the shallow spherical cap under external pressure is the only
problem which has been investigated extensively.

Eccentricity effects (i.e., “onesidedness™) of stiffened shells cannot usually be
neglected in buckling investigations. When eccentricity is included, significant
differences can be obtained in buckling loads for some shell geometries. Numerical
results given in reference 3 also show that theory based upon membrane-prebuckling
analysis can give different results than theory based on the more comprehensive linear-
or nonlinear-bending prebuckling analysis. Dynamic loading may also lower the static
buckling strength of shells.

Until quite recently, most theoretical stability studies of doubly curved shells were
limited to spherical shells subjected to simplified loading conditions and with
simplified edge restraints. The growing use of digital computers for analysis of shell
structures has improved this situation, although not all restrictions have been removed.
For example, available finite-difference computer programs for doubly curved shells
are limited to elastic analysis of orthotropic shells of revolution with constant elastic
stiffness as shown in reference 3, and to isotropic layered construction (ref. 4). These
programs are suitable for use in design of shells of double curvature if complemented
by tests that provide a suitable correlation factor.

The program of reference 3 computes the buckling loads of shells of revolution for
either membrane or nonlinear prebuckling bending stresses resulting from
axisymmetric loadings of constant axial compression and uniform external pressure.
Because of approximations in the theory, buckling loads for shells with rapid changes
of curvature of the meridian or for shells which buckle with a small number of
circumferential waves cannot be obtained accurately. Stiffened shells may be analyzed
if the stiffening elements are so closely spaced that they may be smeared out. Stiffened
shells are generally more efficient and less sensitive to imperfections. The results of the
program may be complemented by studies similar to those of references 5 to 8 which
permit an estimate of the effect of initial imperfections on buckling strength. For shells
which such studies show to be insensitive to imperfections, fewer tests are required to

establish design values.



The program of reference 4 permits the nonlinear analysis of shells of revolution under
asymmetric surface and thermal loading, but cannot indicate the possibility of the
existence of another nonlinear state at some value of the load. The maximum number
of meridional node points is 20 and the maximum number of circumferential Fourier
components is 10. Boundary conditions may be closed at one or both ends, or may be
free, fixed, or elastically restrained. This program may be used to obtain buckling loads
defined by the maximum load for which equilibrium can be maintained.

A number of programs similar to that described in reference 3, but which use a
finite-element approach, have been developed and appear to be promising. However,
these are not documented nor generally available. All the programs for doubly curved
shells, including both finite-difference and finite-element, treat only those cases where
the shell does not become plastic prior to buckling.

Although the capability for stability analysis has increased, there is a lack of parametric
optimization studies for problems of interest. This may well be due to the reldtive
newness of most computer programs. To date, most computer programs have been
used for spot checks of approximate solutions and for comparisons with experimental
data.

Available design information is summarized in Section 4. To put improved procedures
to immediate use, however, the designer is advised to be alert to new developments in
shell-stability analysis. The recommendations will be modified as more theoretical and
test data become available.

3. CRITERIA

3.1 General

Structural components consisting of thin, curved isotropic or composite sheet, with or
without stiffening, shall be so designed that (1) unanticipated buckling resulting in
collapse of the structural components will not occur from the application of ultimate
design loads, and (2) buckling deformation resulting from limit (maximum expected)
loads will not be so large as to impair the function of the structural components or
nearby components, nor so large as to produce undesirable changes in loading.

3.2 Guides for Compliance

Design loads for buckling shall be considered to be any combination of ground or flight
loads, including loads resulting from temperature changes, that cause compressive



inplane stresses (multiplied by the ultimate design factor) and any load or load
combination tending to alleviate buckling (not multiplied by the ultimate design
factor). Buckling strength of thin-walled doubly curved shells shall be defined by
analyses which include semiempirical correlation factors.

Representative structures shall be tested under conditions simulating the design loads
when:

®  Configurations are shells of arbitrary shape.

e  Configurations are of minimum weight, and coupling between the various modes
of failure is possible.

® No theory or correlation factor exists.

® Correlation factors used are less conservative than those recommended in this
document.

e Cutouts, joints, or other design irregularities occur.

4. RECOMMENDED PRACTICES

4.1 Scope

Procedures for the estimation of buckling loads on doubly curved shells are described
in this section; the source of the procedures and limitations of the procedures are
discussed. Where the recommended practice is suitably defined in all its detail in a
readily available reference, it is merely outlined.

4.2 Isotropic Doubly Curved Shells

Unstiffened isotropic doubly curved shells subjected to various conditions of loadings
are considered in this section. Solutions are limited to spherical, ellipsoidal, and
toroidal shells.

4.2.1 Spherical Shells

4.2.1.1 Spherical Caps Under Uniform External Pressure

The buckling of a spherical cap under uniform external pressure (fig. 1) has been
treated extensively. Theoretical results are presented in references 9 and 10 for



axisymmetric snap-through of shallow spherical shells with edges that are restrained
against translation, but are either free to rotate or are clamped. Results for asymmetric
buckling are given in references 11 and 12 for the same boundary conditions. The
results reported in these references are presented as the ratio of the buckling pressure
Pcr for the spherical cap and the classical buckling pressure p.g for a complete
spherical shell as a function of a geometry parameter A:
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where ¢ is half the included angle of the spherical cap (fig. 1).
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Figure 1
Geometry of spherical cap under uniform external pressure

The function f(\) depends on the boundary conditions imposed on the shell.
Most of the available test data apply to spherical shells, and values are lower than

theoretically predicted buckling pressures. The discrepancy between theory and
experiment can be largely attributed to initial deviations from the ideal spherical shape




(refs. 10, 13, and 14) and to differences between actual and assumed edge conditions
(refs. 15 and 16). Most of the available data are summarized in reference 17; some
other test results are given in references 13 and 18. A lower bound to the data for
clamped shells is given by

p
o 0.14+3;\;22(>\>2) 4)
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which is plotted in figure 2. While the A\ parameter is used in shallow-shell analysis,
figure 2 may be applied to deep shells as well as to shallow shells.
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Recommended design buckling pressure of spherical caps

4212 Spherical Caps Under Concentrated Load at the Apex

Spherical caps under concentrated load at the apex (fig. 3) will buckle under certain
conditions. Theoretical results for edges that are free to rotate and to expand in the
direction normal to the axis of revolution and for clamped edges are given in reference
19 for axisymmetric snap-through and in references 7 and 20 for asymmetric buckling.
Experimental results for loads which approximate concentrated loading are described
in references 21 to 25.



Figure 3
Geometry of spherical cap under concentrated load at the apex

For shells with unrestrained edges, buckling will not occur if A is less than about 3.8. In
this range of shell geometry, deformation will increase with increasing load until
collapse resulting from plasticity effects occurs. For shells with values of A greater than
3.8, theoretical and experimental results are in good agreement for axisymmetric
snap-through, but disagree when theory indicates that asymmetric buckling should
occur first. In this case, buckling and collapse are apparently not synonymous, and
only collapse loads have been measured. A lower-bound relationship between the
collapse-load parameter and the geometry parameter for the data of references 7, 21,
and 22 for shells with unrestrained edges is given by

= — N = < 5
E - 37 (4<A<18) (5)

For spherical caps with clamped edges, theory indicates that buckling will not occur if
A is less than about 8. For values of X between 8 and 9, axisymmetric snap-through will
occur, with the shell continuing to carry increasing load. For larger values of A,
asymmetrical buckling will occur first, but the shell will continue to carry load.
Although imperfections influence the initiation of symmetric or asymmetric buckling,
few measurements have been made of the load at which symmetric or asymmetric
deformations first occur. Experimental results indicate that the collapse loads of
clamped spherical caps loaded over a small area are conservatively estimated by the
loads calculated in reference 7 and shown in figure 4. When the area of loading
becomes large, local buckling may occur at a lower load.
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Theoretical buckling loads for clamped spherical cap under concentrated load

4.2.1.3 Spherical Caps Under Uniform Exterhal Pressure
and Concentrated Load at the Apex

Clamped spherical caps subjected to combinations of uniform external pressure and
concentrated load at the apex are discussed in reference 26. The experimental and
theoretical data given there are insufficient, however, to yield conclusive results. A
straight-line interaction curve is recommended:

ot = (6)

where P is the applied concentrated load, p the applied uniform pressure, P.. the
critical concentrated load given in Section 4.2.1.2, and Pcr is the critical uniform
external pressure given in Section 4.2.1.1.

4.2.2 Ellipsoidal (Spheroidal) Shells

4221 Complete Ellipsoidal Shells Under
Uniform External Pressure

Ellipsoidal shells of revolution subjected to uniform external pressure, as shown in
figure 5, are treated in reference 8. Calculated theoretical results for prolate spheroids



are shown in figures 6a and 6b. Experimental results given in reference 27 for prolate
spherical shells with 4 > A/B > 1.5 are in reasonably close agreement with the
theoretical results of reference 8. For A/B > 1.5, the theoretical pressure should be
multiplied by the factor 0.75 to provide a lower bound to the data. Results given in
reference 28 for half of a prolate spheroidal shell (A/B = 3) closed by an end plate are
in good agreement with those for the complete shell.

The analysis of reference 8 indicates that theoretical results for thin, oblate spheroidal
shells are similar to those for a sphere of radius

Ry = — )
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revolution revolution
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Figure 5

Geometry of ellipsoidal shells

The data of reference 29 show that experimental results are similar, as well. Thus, the
external buckling pressure for a thin, oblate spheroid may be approximated by the
relationship

P _
3 . ) g - 014 (8)

V31— 1) <RA>2
which is the limit of equation (4) as X\ becomes large.

4222 Complete Oblate Spheroidal Shells Under Uniform Internal Pressure’

When the radius ratio A/B of an oblate spheroid is less than V%,internal pressure

produces compressive stresses in the shell, and hence allows instability to occur.
Theoretical values of the critical internal pressures given by the analysis of reference 8
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Theoretical external buckling pressures of prolate spheroids (¢ = 0.3)
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are shown in figure 7. No experimental results are available, but the study of
imperfection sensitivity of reference 8 indicates that there should be good agreement
between theory and experiment for shells with 0.5 < A/B<0.7.
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Figure 7
Theoretical buckling pressures of oblate spheroids under internal pressure (u = 0.3)

4223 Ellipsoidal and Torispherical Bulkheads Under Internal Pressure

Clamped oblate spheroidal (ellipsoidal) bulkheads (fig. 8) may have the ratio of length
of minor and major axes (A/B) less than %without buckling under internal pressure,
provided the thickness exceeds a certain critical value. This problem is investigated in
reference 30. Nonlinear bending theory is used to determine the prebuckling stress
distribution. The regions of stability are shown in figure 9; the calculated variation of
buckling pressure with thickness is shown in figure 10. The theory has not been
verified by experimental results, however, and should be used with caution.

Torispherical end closures, shown in figure 11, are also investigated in reference 30.

Calculations are made for the prebuckling stress distribution in these bulkheads for
ends restrained by cylindrical shells and for buckling pressures for torispherical

12
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Region of stability for ellipsoidal closures subjected to internal pressure (u = 0.3)
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Theoretical results for clamped ellipsoidal bulkheads subjected to uniform internal pressure (u = 0.3)
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Figure 11
Geometry of torispherical closure

bulkheads with clamped edge conditions after buckling. The results are shown in figure
12. The experimental results of reference 31 indicate that the theoretically predicted
buckling pressures should be multiplied by a correlation factor v equal to 0.7.

4.2.3 Toroidal Shells

423.1 Complete Circular Toroidal Shells Under Uniform
External Pressure

The complete circular toroidal shell under uniform external pressure (fig. 13) has been
investigated and is described in reference 32; the theoretical results obtained are shown
in figure 14.

Experimental results are given in reference 32 for values of b/a of 6.3 and 8, and
indicate good agreement with theory. For values of b/a equal to or greater than 6.3,

15
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Theoretical results for torispherical closures subjected to uniform internal pressure (u = 0.3)
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Figure 13
Geometry of a toroidal shell under uniform external pressure
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Theoretical buckling coefficients for toroidal shells under uniform external pressure
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the theoretical buckling pressure should be multiplied by a factor of 0.9 to yield design
values. This correction factor has been recommended in reference 1 for long cylindrical
shells which correspond to a value of b/a of . For values of b/a less than 6.3, the
buckling pressure should be verified by test.

4232 Shallow Bowed-Out Toroidal Segments Under Axial Loading

A bowed-out equatorial toroidal segment under axial tension (fig. 15) will undergo
compressive circumferential stress and will thus be susceptible to buckling. An analysis
for simply supported shallow segments is given in reference 33 and yields the

relationship
2
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Buckling of bowed-out toroidal segments under axial tension
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where the correlation coefficient v has been inserted to account for discrepancies
between theory and experiment. The values obtained by minimizing equation (9) with
respect to § are shown in figure 15. The straight-line portion of the curves are
represented by the relationship

N VZ | (10)

A similar analytical investigation described in reference 34 for clamped truncated
hemispheres in axial tension yields results in close agreement with those for the curve
of figure 15 forr/a = 1. '

Experimental results for the truncated hemisphere given in reference 34 indicate that
the correlation coefficient for the curve for r/a equal to 1 is

vy = 035 (11)

The same value of the correlation coefficient may be used for other values of r/a.

Some results for bowed-out equatorial toroidal segments under axial compression are
given in reference 35; the equatorial spherical shell segment loaded by its own weight is
treated in reference 36.

4.2.3.3 Shallow Toroidal Segments Under Uniform External Pressure

The term “‘lateral pressure” designates an external pressure which acts only on the
curved walls of the shell and not on the ends; “hydrostatic pressure” designates an
external pressure that acts on both the curved walls and the ends of the shell.
Expressions for simply supported shallow equatorial toroidal segments subjected to
uniform external lateral or hydrostatic pressure, as shown in figures 16 and 17, are
given in reference 37 as

2

2 + L2
pCIIQ _ 1 2.2 12 22 l_aﬁ

@D (12)

19



for lateral pressure, and as

Perr?’ I+

1
D 2 (1glr) 1
B (l+2a>+2

(13)

for hydrostatic pressure. In equations (12) and (13), the upper sign refers to segments
of type (a) of figure 18, while the lower sign refers to segments of type (b) of figure
18. The correlation coefficient v has been introduced to account for discrepancies
between theory and experiment. The results of minimizing the buckling pressure with
respect to the circumferential wavelength parameter 8 are shown in figures 16 and 17.
The straight-line portions of the curve for the shells of type (a) of figure 18 are
represented by the relationships

22
Per! = 43 I ~Z (lateral pressure) (14a)

7D 72 a4

@
Per _ 8 V3 r ~Z (hydrostatic pressure) (14b)
72D H_I 2

No experimental data are available except for the cylindrical shell for which a
correlation factor of

v = 0.56 (15)

was recommended in reference 1. The same correlation factor can be used for shells
with r/a near zero, but should be used with caution for shells of type (b) with values of
r/a near unity. For shells of type (a) with values of r/a near unity, the shell can be
conservatively treated as a sphere, or the buckling pressure should be verified by test.

4.3 Orthotropic Doubly Curved Shells

The term “orthotropic doubly curved shells” covers a wide variety of shells. In its
strictest sense, it denotes single- or multiple-layered shells made of orthotropic
materials. In this monograph, the directions of the axes of orthotropy for shells of
revolution are assumed to coincide with the meridional and circumferential directions

20
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Buckling of toroidal segments under uniform external hydrostatic pressure
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Geometry of toroidal segments near equators

of the shell. The term also denotes types of stiffened shells in which the stiffener
spacing is small enough for the shell to be approximated by a fictitious sheet whose
orthotropic bending and extensional properties include those of the individual
stiffening elements averaged out over representative widths or areas.

The behavior of the various types of orthotropic shells may be described by a single
theory, the governing equations of which are equations of equilibrium for the buckled
structure, and relationships between force and moment resultants and extensional and
bending strains. The matrix equation relating the inplane forces and bending moments
to the inplane strains and curvatures for shells of revolution with axes of orthotropy in
the meridional and circumferential directions can be written in the following form:

N, Ci Ciz 0 Cua Cis 0 €,
N, Cn Cs, 0 Caa Cys 0 €
Ni, 0 0 Css 0 0 0 €12
= (16)
M, Cia Cas 0 Cas Cas 0 Ky
M, Cis Cys 0 Cas Css 0 Ky
M, _0 0 0 0 0 Ces | k K12 ‘

22



Zero entries in the above matrix generally refer to coupling terms for layers whose
individual principal axes of stiffnesses are not aligned in meridional and circumferential
directions. The values of the various elastic constants used in determining buckling
loads of orthotropic shells are different for different types of construction. Some
widely used expressions are given in reference 3.

The theory for single-layered shells of orthotropic material is similar to that for
isotropic shells since the coupling terms C 4, C;5, Ca4 , and C,5 may be set equal to
zero. For stiffened doubly curved shells or for shells having multiple orthotropic layers,
this is not generally possible and it is shown in references 38 and 39 that the neglect of
coupling terms can lead to serious errors. For example, the inclusion of coupling terms
yields a significant difference in theoretical results for stiffened shallow spherical-
dome configurations having stiffeners on the inner surface or on the outer surface. The
difference vanishes when coupling is neglected.

Very little theoretical or experimental data are available for orthotropic and stiffened
doubly curved shells. General instability loads of pressurized shallow spherical domes
with meridional stiffeners are determined in reference 40, and a semiempirical design
formula is-given in reference 41 for stiffened spherical caps. This formula closely
approximates the test data given in reference 41. Buckling loads are given for
grid-stiffened spherical domes in reference 42; references 40 to 42 do not include the
effect of stiffener eccentricity.

Stiffener-eccentricity effects are investigated in reference 38 for grid-stiffened spherical
domes. Eccentrically stiffened shallow equatorial toroidal shells under axial load and
uniform pressure are investigated in reference 43. Reference 3 discusses the
development of a buckling computer program that includes coupling as well as
nonlinear prebuckling bending effects for orthotropic shells of revolution. (The cards
and a computer listing for this program are available from COSMIC, University of
Georgia, Athens, Georgia.) Numerical results obtained from this program, given in
reference 3, were in good agreement with selected experimental results. The computer

program can be used to determine the buckling load of the following orthotropic
shells:

®  Shells with ring and stringer stiffening.

®  Shells with skew stiffeners.

®  Fiber-reinforced (layered) shells.

® Layered shells (isotropic or orthotropic).

e Corrugated ring-stiffened shells.

®  Shells with one corrugated and one smooth skin (with rings).

Boundary conditions may be closed at one or both ends, or may be free, fixed, or
elastically restrained. Edge rings are permitted on the boundary.



This computer program can be used in conjunction with experimentally determined
correlation factors to obtain buckling loads for orthotropic shells of revolution. The
limitations of the program are given in reference 3.

The design recommendations given below are limited to spherical domes; the
recommendations should also be verified by test, where feasible. The possibility of
local buckling of the shell between stiffening elements should be checked.

The investigation of reference 42 gives the theoretical buckling pressure of a
grid-stiffened spherical dome under uniform external pressure. This analysis assumes
that the spherical dome is “deep” and that it contains many buckle wavelengths. In
this case, the boundary conditions have little effect on the buckling load. Eccentricity
effects are neglected. Experimental results given in reference 29 tend to support the
assumptions of the analysis.

If the analysis of reference 42 is extended to the materially or geometrically
orthotropic shell, then the hydrostatic buckling pressure can be expressed as

(ST

(Cus +Cqp) + .Cﬁ

1+2
PR3 _ Caa Csa
— = 4y ¢ (17)
P 1+ =22 4 922
Csa ¥,y Cis v,
where
_ CuR? 'Cyp 2
= 1 — 18
301 C44 < ‘C11C22 ( 3.) .
Y = 2Css (18b)

1 — Cyp? _2C12C33
Ci11Cpy Ci11Coy

The constants Cy; , Cy, Cpy , Ca3, Cay , Css , Cs5 , and Cgyg are defined in reference 3
for the various materially and geometrically orthotropic materials. Equation (17) does
not include the effect of stiffener eccentricity since the coupling terms C,4 , Cy5 , Cps
and C,5 in equation (16) have been neglected. Only limited experimental data exist for
geometrically or materially orthotropic spherical domes subjected to hydrostatic
pressure (refs. 29 and 41). In the absence of more extensive test results, it is
recommended that the isotropic spherical cap reduction factor shown in equation (4)
also be used for the orthotropic spherical shell. The correlation factor is given by

y = 0.14 + =% (19)
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This equation is plotted in figure 2. The effective shell thickness to be used in’
obtaining A is recommended as

4
CysC
t = 4455\/1_2' 20
V CiiCa 0

4.4 Isotropic Sandwich Doubly Curved Shells

The term “isotropic sandwich” designates a layered construction formed by bonding
two thin isotropic facings to a thick core. Generally, the thin isotropic facings provide
nearly all the bending rigidity of the construction; the core separates the facings and
transmits shear so that the facings bend about a common neutral axis.

Sandwich construction should be checked for two possible modes of instability failure:
(1) general instability failure where the shell fails with core and facings acting together,
and (2) local instability failure taking the form of dimpling of the faces or wrinkling of
the faces (fig. 19).

2R Vil 2. b

Facing

Honeycomb
v Separation Core

!
)/ cor ;mw, [/ i
f

y 7

Facing

Pt fret [RA AR

General buckling Dimpling Wrinkling of facings
of facings :

Figure 19
Types of failure of sandwich shells
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4.4.1 General Failure

If the sandwich core is resistant to transverse shear so that its shear stiffness can be
assumed to be infinite, the sandwich shell can be treated as an equivalent isotropic
shell. For unequal thickness facings, the equivalent isotropic material thickness and
modulus of elasticity are then given by

T = vizh (21a)
Eity + E?_
E = E_ltl____t_"_'_gﬁ (21b)

and for equal-thickness facings with the same modulus of elasticity, by

T = 3h (222)

2Etf

E = N (22b)

These equivalent properties can be used in conjunction with the recommended
practices in Section 4.2 and with the computer program of reference 3 to analyze
isotropic sandwich doubly curved shells.

Only one theoretical investigation which includes shear flexibility is available.

Reference 44 treats the buckling of a sandwich sphere comprised of a core layer of

low-modulus material and two equal facing layers of high-modulus material. Because

there are insufficient theoretical and experimental data, no design recommendations -
can be given for this case.

442 Local Failure

Modes of failure other than overall buckling are possible. For honeycomb-core
sandwich shells, failure may occur because of core crushing, intracell buckling, and face
wrinkling. The use of relatively heavy cores (§ > 0.03) will usually insure against core
crushing. Lighter cores may prove to be justified as data become available. Procedures
for the determination of intracell buckling and face-wrinkling loads are given in
reference 45.
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SYMBOLS

radius of curvature of circular toroidal-shell cross section (See fig. 13.)

distance from center of circular cross section of circular toroidal-shell
cross section to axis of revolution (See fig. 13.)

lengths of semiaxes of ellipsoidal shells

coefficients of constitutive equations [See eq. (16).]

Et?

monocoque shell-wall flexural stiffness, + &>
12(1-p?)

Young’s modulus

equivalent Young’s modulus for isotropic sandwich shells

Young’s moduli of the 1- and 2-face sheets, respectively, for isotropic
sandwich shells

distance between middle surfaces of the top and bottom face sheets for
isotropic sandwich shells

length of toroidal-shell segment (See fig. 18.)

moment resultants per unit of middle surface length

axial tension force per unit circumference applied to a toroidal segment
(See fig. 15.)

force resultants per unit of middle surface length

number of buckle waves in the circumferential direction

concentrated load at apex of spherical cap

critical concentrated load at apex of spherical cap

uniform pressure

classical uniform buckling pressure for a complete spherical shell

critical uniform pressure

radius of spherical shell

2
effective radius of a thin-walled oblate spheroid, —%—

maximum radius of torispherical shell (See fig. 11.)

toroidal radius of torispherical shell (See fig. 11.)

radius of equator of toroidal shell segment (See fig. 18.)

thickness of single-layered shell

equivalent constant thickness for isotropic sandwich shells [See eq.
(21).]

face thickness of sandwich shell having equal-thickness faces
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face-sheet thicknesses for sandwich construction having faces of
unequal thickness

2
curvature parameter of toroidal-shell segment, /(1—u?) %

buckle wavelength parameter, —:—f-

correlation factor to account for difference between classical ‘theory
and recommended lower-bound instabiliy loads

ratio of core density of honeycomb sandwich to density of face sheet

reference-surface strains

reference-surface curvature changes

spherical-cap geometry parameter [See eq. (3).]

Poisson’s ratio

half the included angle of spherical cap (See fig. 1.)

half the included angle of spherical cap portion of torispherical closure
(See fig. 11.)

[See eq. (18).]
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